In ricordo di un amico

  Richiedi informazioni / contattami

Il motore Diesel è destinato a scomparire in nome della sostenibilità. Ma siamo certi che il rimedio non sia peggio del male?

Figura 1 – Le quattro fasi del ciclo teorizzato da Diesel
Figura 1 – Le quattro fasi del ciclo teorizzato da Diesel
In ricordo di un amico
In ricordo di un amico

Parlare di quello che è successo in questi giorni di neve e freddo, della manuten­zione carente di mezzi ed infrastrutture di trasporto (ferrovie e strade), è come spara­re sulla Croce Rossa. Rimandiamo quindi ai precedenti articoli scritti sull’argomento.

Così come rimandiamo ad altri articoli le valu­tazioni sulle affermazioni di un valente econo­mista dei trasporti che teorizza più autostrade, più TIR (anche automatici) in “odio” alle ferrovie e a quello che a suo dire è spreco di denaro pubblico.

Ci dedichiamo invece in queste poche righe a parlare di un “amico”, di un motore che ha fatto la storia del trasporto su strada e ferrovia e che ora, in ossequio alla sostenibilità ambientale, sta per essere rottamato come ferro vecchio, alme­no nelle città.

Ci riferiamo ovviamente al motore diesel.

Rudolf Diesel cercò di trovare un più efficace sostituto per il vapore come mezzo fluido da usare nelle macchine termiche. Giovandosi di una notevole preparazione teorica di tipo ma­tematico e fisico, Diesel riuscì a progettare un motore che aveva un rendimento superiore a quello della macchina a vapore e del motore che Nikolaus August Otto aveva inventato di re­cente. Il motore venne brevettato nel 1892, ma fino al 1897 non venne realizzato alcun esem­plare che funzionasse in modo del tutto soddi­sfacente.

Il ciclo teorizzato da Diesel è un ciclo termodi­namico per motori a combustione interna dove, a differenza del ciclo Otto, l’accensione della mi­scela non avviene attraverso una candela bensì attraverso un procedimento di compressione. Esso comprende 4 fasi, elencate in figura 1.

1→ 2: compressione adiabatica del gas con au­mento di pressione e temperatura e diminuzio­ne del volume; durante questa compressione si spende il lavoro L12. 

2→ 3: somministrazione del calore qs a pres­sione costante; aumentano la temperatura ed il volume del gas. 

3→ 4: adiabatica di espansione con diminu­zione della pressione e della temperatura ed aumento del volume; si tratta della fase attiva del ciclo dalla quale si ottiene il lavoro L34 con aumento del volume; il lavoro ottenuto dal ciclo è dunque L=L34-L12.

4→ 1: a volume costante viene sottratta una quantità di calore qi: diminuiscono temperatu­ra e pressione ed il gas torna allo stato fisico iniziale

Rudolf Diesel è stato un personaggio controver­so, geniale inventore ma scarso imprenditore. Il suo motore inizialmente trovò applicazioni in impianti fissi, ferroviari e nell’ambito navale. Solo però negli anni Venti del secolo scorso si affermò come motore per il trasporto terrestre su strada.

Per decenni, fino agli anni Novanta, il motore diesel trova impiego principalmente sui veicoli pesanti (autocarri e autobus) mentre l’utilizzo sulle automobili aumenta notevolmente con gli sviluppi tecnologici degli anni Novanta.

Da allora i motori diventano sempre più raffi­nati, più leggeri e silenziosi e sempre meno in­quinanti, fino a competere anche su vetture di prestigio con i motori a benzina.

Però la “rottamazione”, almeno per le città, sembra inarrestabile.

In generale si stima che l’adozione di veicoli elettrici andrà verso quote di mercato mondiali del 50% nel 2030, mentre in Europa per i mo­tori diesel si passerà dal 48% del 2016 al 36% del 2020 a causa dei costi sempre più elevati necessari per rispettare gli standard di emissio­ni di ossidi di azoto.

Questo anche se ad oggi i livelli di emissione equivalente di CO2 per veicoli elettrici sono an­cora molto più alti rispetto ai diesel e ai benzi­na perché comunque l’elettricità è prodotta per la maggior parte da combustibili fossili. Solo quando avremo fonti rinnovabili totali le cose potranno cambiare.

E comunque i motori diesel di ultima generazio­ne, con sistemi di abbattimento degli ossidi di azoto, sono meno inquinanti dei motori a ben­zina e a livello di ambiente molto meno dannosi del riscaldamento delle case.

Ma parlavo di un “amico”.

Sono cresciuto nel mondo della manutenzione trasporto con i motori diesel. Ricordo le storie che raccontavano i vecchi autisti dei primi vei­coli trasporto del dopoguerra (Lancia Esatau del 1947 e successivi, FIAT 682 – regina d’Africa – prodotto dal 1952 al 1987 il cui propulsore a 6 cilindri in linea fu utilizzato anche su automotri­ci FS). Storie in cui gli autisti dovevano essere anche meccanici nel vero senso della parola, dovevano conoscere i motori e saperci mettere le mani sopra.

Altri tempi.

Ho guidato negli ultimi vent’anni molte vetture diesel per centinaia di migliaia di chilometri e non ricordo di avere avuto problemi ai motori. Diesel, al di là del minor costo del carburan­te, è stato per me sinonimo di affidabilità e di tranquillità di viaggio (anche se all’inizio un po’ rumoroso).

Ora, tra pochi anni, l’amico sparirà, almeno dal mio orizzonte.

 

Bruno Sasso, Coordinatore sezione Trasporti A.I.MAN.

Pubblicato il Marzo 12, 2018 - (7145 views)
Articoli correlati
Quarant’anni del PEEK con Victrex
Conrad abbassa i prezzi di molti marchi in distribuzione
I corsi e i centri per la formazione presentati da NSK
I Cobots in mostra a Hannover Messe
Trasmettitori di pressione piezoresistivi
Il sito internet di mbo Osswald è disponibile in italiano e spagnolo
Pompe a pistone e a camme
Torce ermetiche per uso industriale
Etichetta per campioni di laboratorio
La tredicesima edizione di Automation & Testing
Lubrificatore intelligente
Asset Management
Servizio clienti personalizzato
Articoli di trasmissione e potenza
Lubrificatori affidabili per compressori
Avvitatori pneumatici
Prodotti per la riduzione dei rischi
Trasmettitori di pressione
Soluzione per forniture industriali
Penna per guarnizioni
Penna per guarnizioni
Lubrificanti per la manutenzione
Strumento portatile AC/DC
CMMS Smart Generation
Custodia per termografia
Etichetta per campioni di laboratorio
Punte per la foratura dell'alluminio
Resina epossidica per giunzioni strutturali
Sensori con IO-Link per scambio dati
Compact Dosing Solution: il sistema di dosaggio per microportate
Avvitatori pneumatici
Prodotti per la riduzione dei rischi
Penna per guarnizioni
Grasso lubrificante per cuscinetti
Macchine pneumatiche di qualità
Torce ermetiche per uso industriale
Etichetta per campioni di laboratorio
Interruttori d’arresto per unità di controllo mobili
Compact Dosing Solution: il sistema di dosaggio per microportate
Guida lineare per applicazioni heavy-duty